ひよこ、通勤中。

通勤中の電車の中でひよこは何を思うのか。

dockerメモ

コンテナ起動

$ docker run -d -it ubuntu:16.04 bash

※ ubuntu:16.04はdockerイメージ名

コンテナのターミナルに接続

$ docker exec -it ${CONTAINER_ID} bash

コンテナの状態をコミット

$ docker commit ${CONTAINER_ID}

タグ付け

$ docker tag ${commit番号} ${REPOSITORY}:${TAG} #例 test:latest

イメージの削除

$ docker rmi ${REPOSITORY}:${TAG} 

docker imagesで確認できる

Docker Imageを保存/読み込み

保存

$ docker save -o ファイル名  ${REPOSITORY}:${TAG}

読み込み

 $ docker load < ファイル名

自分流jupyter notebookの1セル目

import collections
import pathlib

# データ処理周り
import numpy as np
import pandas as pd
from IPython.core.display import display

# 可視化ライブラリ
import matplotlib.pyplot as plt
from matplotlib import cm # colormap
import seaborn as sns
%matplotlib inline

# pandasのwarningが邪魔なので
import warnings
warnings.filterwarnings('ignore')

# options
# pd.set_option('display.max_columns', 50)
plt.style.use('ggplot')

いつものHML分析

d = access_features['count'].sort_values().reset_index()
d.columns = ['base_index', 'count']
d = d.reset_index() 

from sklearn.cluster import KMeans
from matplotlib import cm
kmeans = KMeans(n_clusters=3)
kmeans.fit(d[['count']])
d.loc[:, 'cluster'] = kmeans.labels_

fig, ax = plt.subplots()
colors = cm.Accent.colors
for i in range(3):
    target = d[d['cluster'] == i]
    ax.scatter(x=target['index'], y=target['count'], c=colors[i]

f:id:cocodrips:20180119160746p:plain

pandasで日時周り

dftimeカラムがあることを想定

文字列 -> datetime型

time2017-01-01とかの文字列だったとき

pd.to_datatime(df['time'])

でだいたいよしなにparseしてくれる

unixtime -> datetime型

timeがunixtimeだったとき

pd.to_datatime(df['time'], unit='s')

一部情報を取り出す(日付、月、時間等)

datetime = pd.to_datatime(df['time'])
datetime.dt.hour